Class: Bid/Ask bounce

Dean Foster

November 13, 2013

Administrivia

- Read sections 6.2, 6.3 and 6.5

Modelling B/A bounce

- Levels are best thought of as a martingale
- So, arIma
- So we should difference
- But, bid-ask bounce is in price space:

\[\hat{P}_t = P_t^* + I_t S/2 \]

- where \(P_t^* \) is the real price
- \(I \) is a +1/-1 RV
- \(S \) is the spread

- So the difference is:

\[\Delta \hat{P}_t = \Delta P_t^* + (I_t - I_{t-1}) S/2 \]

- So it looks like a MA process in terms of the \(I \)'s
• If we take ΔP^*_t as zero, it is a pure MA process.

• For fast enough times, this isn’t a bad approximation

• Work out Covariance for zero noise

With a martingale term

• What about martingale? (I.e. random walk)

• work out covariance

• Not correlation is lower since it is divided by a larger variance

Empirics

• We have a negative auto-correlation

• i.e. “mean reverting.”

• But not one we can trade on

• So useful for predictions: but not for making money

Need to model inter-arrival times (section 6.5)

• Whole area of probabilistic modelling, eg renewal theory

• Easiest model: inter-arrivals are independent

 – W_i is waiting time between events
 – $T_k = \sum^k W_i$ is time until kth event
 – $N_t = \inf\{k|T_k > t\}$ is the count of the number of trades
 – See stat 433 for details (all of chapter 7)
• But harder in finance

• Want to allow for inhomogenous trading rates
 – Easy: more trades in morning, fewer during lunch
 – Harder: hot stocks, requires an ARCH like model

Model for duration

• First take out the easy part: \(x_i = W_i / f(T_i) \)
 – \(W_i \) is raw waiting time
 – \(T_i \) is the time we are talking about
 – \(f() \) is the basic speed (say time of day effect)

• Now estimate speed by GARCH like effect
 – \(\psi_i \) is say exponential smooth of \(x_i \)’s
 – Can build as complex an estimator as one likes

• Now model \(X_i = \psi_i \epsilon_i \)
 – Where \(\epsilon_i \) are say IID exponentials
 – Some like Wiebell, or Gamma distribution