Chapter 8 intro

Dean P Foster

September 27, 2010

Administrivia

•

Markov’s inequality: why

Definition of expectation comes from probability.
How do you compute a probability from an expectation?

• working backwards—like division

• Expectation is linear, probability is linear, just “invert” the matrix that relates them.

• harder, but more useful, find a bound

Markov’s inequality: motivation

Let’s ask Gretchen: Suppose I have 10 kids, and the average number of blocks per kid is 6.5. What maximal amount any one kid has? (65)
What is the probability of a kid choosen at random to have more than 65 blocks? (zero) Ok, how about 64 blocks?

Imprtant to do with blocks and not money

The average wealth saved by my 10 friends is $10,000. What is the maximum? $200k I say? Ah, several of my friends are in debt hence negative savings.

Statement and proofs:

If, $X \geq 0$, then $P(X > M) < E(X)/M$.

Proofs:

- Draw balance beam and optimize
- Consider the random variable $Y = MI_{X>M}$. $Y \leq X$, so $EY < EX$.
- $EX = \int_0^\infty xf(x)dx \geq \int_M^\infty xf(x)dx \geq \int_M^\infty Mf(x)dx = P(X > M)$.

Chebeychev’s inequality

Let $X = (Y - E(Y))^2$. Then $X \geq 0$ so markov applies.

Theorem 1 $P(|Y - E(Y)|^2 > M) \leq E(Y - E(Y))^2/M$

Even that theorem wouldn’t get a new name. But lets do a substitution of $k = \sqrt{M}$.

Theorem 2 (Chebeychev) $P(|Y - E(Y)| > k) \leq Var(Y)/k^2$
Exponential inequality

Let \(X = e^Y \). Then \(X \geq 0 \), so Markov applies.

Theorem 3 Let \(M(1) = E(e^Y) \), then

\[
P(Y > k) \leq M(1)e^{-k}
\]

- \(M(s) = E(e^{sY}) \). So new theorem

\[
P(Y > k) \leq M(s)e^{-sk}
\]

Reminder about sums of random variables

Let \(X_i \) be a sequence of IID random variables. Let \(S = \sum_{i=1}^{n} X_i \). Then:

\[
E(S) = nE(X)
\]
\[
Var(S) = nVar(X)
\]
\[
M_S(1) = M_X(1)^n
\]

If the RHS’s exist.

Application

Plug in the blanks:

\[
P(S > nk) \leq E(X)/k \quad \text{if } X \geq 0
\]
\[
P(|S - n\mu| > k) \leq nVar(X)/k^2
\]
\[
P(S > k) \leq M_X(1)^{-k/n}
\]

But that is too easy. Let’s build it up by hand.
Gambling

- The setup:
 - Suppose round i you bet ϵ fraction of your wealth on gamble Y_i.
 - If it is a fair bet, then your gain is $\epsilon WE(Y)$ (which is a random variable!) or just zero.
 - Suppose your initial wealth is 1.
 - What is your expected wealth at time T? Also 1.

- So, by markov $P(W > k) \leq 1/k$.

- Converting to sums:
 - But if your bet either pays out or doesn’t pay out.
 - Let S be the number of times it pays out.
 - Then $W = (1 + \epsilon a)^S (1 - \epsilon b)^{n-S}$.

- Plugging in:
 \[
P(W > k) = P((1 + \epsilon a)^S (1 - \epsilon b)^{n-S} > k) \\
 = P((\frac{1 + \epsilon a}{1 - \epsilon})^S (1 - \epsilon b)^n > k) \\
 = P(\alpha^S > k(1 - \epsilon b)^{-n}) \\
 = P(S \log(\alpha) > \log(k(1 - \epsilon b)^{-n})) \\
 = P(S > \log(k(1 - \epsilon b)^{-n})/\log(\alpha)) \\
 \leq 1/k
 \]

Writing this differently, let
 \[
v = \log(k(1 - \epsilon b)^{-n})/\log(\alpha)
 \]
\[
\log(\alpha)v = \log(k(1 - \epsilon b)^{-n}) \\
\alpha^v = k(1 - \epsilon b)^{-n} \\
(1 - \epsilon b)^n \alpha^v = k
\]

So,

\[
P(S > v) \leq \alpha^{-v}/(1 - \epsilon b)^n
\]