Chapter 7.1 teaching notes

Dean P Foster

September 27, 2010

Administrivia

- Homework questions?

Many faces of conditional expectation

There are many ways to define conditional expectation:

- \(E(Y \mid X = x) = \sum_x x P(Y = x \mid X = x) \) (or \(E(Y \mid X = x) = \int_x x f(Y = x \mid X = x) dx \))

- \(E(Y \mid X) = g(X) \) such that \(g(x) = E(Y \mid X = x) \)

- \(E(Y \mid X) = g(X) \) such that \(E(g(X)H(X)) = E(Y H(X)) \)

- Fair price: (small bets, repeated many times, actions)

- Best forecast: \(E(Y \mid X) = g(X) \) such that for all \(h() \) we have \(E(Y - h(X))^2 \geq E(Y - g(X))^2 \)

- Covariance gives us a new one.
Define $E(\cdot | X) = X \text{cov}(X, X)^{-1} \text{cov}(X, \cdot)$

- Technical condition: $AX = X^2$ for some matrix A.
 - example $X = \{0, 1\}$
 - example $X = [Z, Z^2, Z^3, \ldots, Z^k]$ where k is the number of discrete values Z takes on

- In statistics, called regression

- For homework you checked that $EX \text{cov}(X, X)^{-1} \text{cov}(X, Y) = E(Y)$.

- Check that it works:
 \[
 E(Y|X) = X \text{cov}(X, X)^{-1} \text{cov}(X, Y)
 \]
 \[
 g(x) = x \text{cov}(X, X)^{-1} \text{cov}(X, Y)
 \]
 \[
 E(g(X)h(X)) = \sum h_i E(g(X)X^i)
 \]
 \[
 = \sum h_i E(X \text{cov}(X, X)^{-1} \text{cov}(X, Y)X^i)
 \]
 \[
 = \sum h_i E(X^{i+1} \text{cov}(X, X)^{-1} \text{cov}(X, Y))
 \]
 \[
 = \sum h_i E(A^i \text{cov}(X, X)^{-1} \text{cov}(X, Y))
 \]
 \[
 = \sum h_i A^i E(Y)
 \]

YIKES!!!

Sums of discrete random variables

Consider X, Y independent discrete random variables. Let $Z = X + Y$. What is the distribution of Z?
\[P(Z = z) = \sum_{x+y=z} P(X = x, Y = y) \]
\[= \sum_x P(X = x, Y = z - x) \]
\[= \sum_x P(X = x)P(Y = z - x) \]

Pretty for integer valued random variables. Define \(m_x, m_y \) and \(m_z \) as the distributions then:

\[m_z(j) = \sum_k m_x(k)m_y(z - x) \]

Curious fact: Sums of any finite integer valued random look the same.

Sums of continuous random variables

same idea:

\[(f \ast g)(z) = \int f(z - y)g(y)dy = \int f(x)g(z - y)dx \]

- uniform goes to triangle
- exponential is a gamma
- gamma goes to gamma: parameters add. Now we have an excuse as to why gamma is defined as it is: \(\Gamma_n(x) = (\Gamma_a \ast \Gamma_b)(x) \).
- normal goes to normal: means add, variances add
• Cauchy goes to Cauchy \((1/\pi(1 + x^2))\)

• Average of Cauchy goes to SAME Cauchy